

Introduction 19 June, 2013

Prof Mohammed Arif
Professor of Sustainability and Process Management,
School of the Built Environment
The University of Salford

Agenda

The Demand

Establishing the paradigm

Barriers

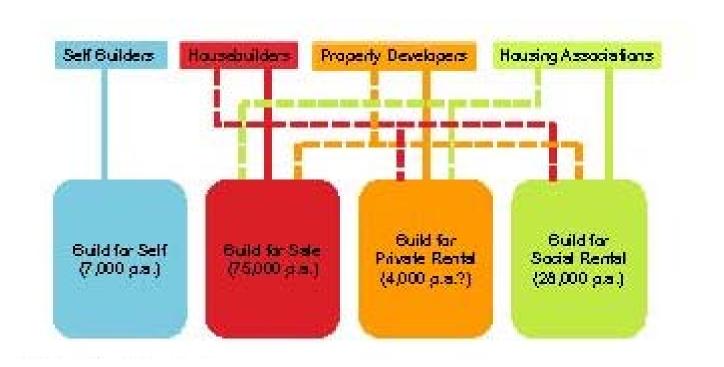
Opportunities

Where are we headed?

Low Cost Housing: The Demand

Global Demand

 There are 1.6 billion people living in need of shelter worldwide according to habitat for humanity.


University of Low Cost Housing: The Demand

Situation in the UK

- 240,000 Affordable Houses are Needed Every Year To Control the Gap Between Supply and Demand
- 2. The New Government Has Announced the New £8.4 Billion National Affordable Housing Programme for England
- 3. 170,000 Homes Funded by the Government Over the Next Four Years

Low Cost Housing in the UK

Social Sustainability

Health and Safety
Continued Employment
Gender Equality
Lower Skill Set

Environmental Sustainability

Low Embodied Energy

Tighter Envelop

Use of Energy Efficient Material

Waste Minimisation

Economic Sustainability

Higher Speed

Economies of Scales Reduces Costs

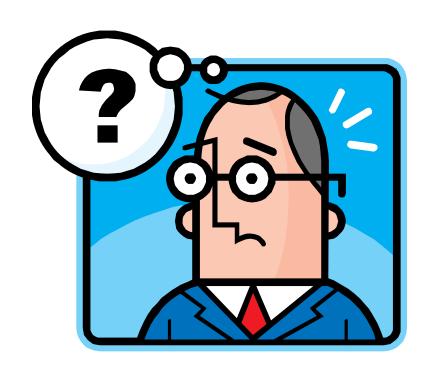
Reduced Reword and Waste Saves Money

Offsite and Sustainability

Issue	Improvement over Conventional Construction (estimated)	Benefit to Society	Benefit to Housebuilder
SOCIAL			
Reduced Accidents & Incidents (H&S)	Up to 80%	Large	Large
Improved Working Conditions and Job Security	Significant	Significant	Small
ENVIRONMENTAL			
Reduced Road Traffic Movements (Congestion & Pollution Benefits)	Up to 70% (40%)	Significent	Small
Reduced Energy Used on Site	Up to 80% (50%)	Small	Small
Reduced Wasts	Up to 90%	Significant	Significant
Reduced Energy-in-Use	20% (typical)	Significent	Small (unless house builder is also the property owner)
ECONOMIC			
Faster Construction	Up to 80% time compression on site	Significant	Large (reduced construction financing costs)
Atemative Business Model	Payment on completion	Small	Large (reduced working capital requirement)
Fewer Defects	Up to 80%	Small	Significant

Note: Figures include adjustments for delivery journeys to the factory and energy consumed during the manufacturing process.

Food For Thought



- Speed
- Economies of Scale
- Quality

So Why Has the Success Only Been Partial?

So Why Has it Not Succeeded?

- Post World War Era
- Bigger Status Symbol Biggest Investment of Life for Some

Knowledge Based Vs Skill Based

Automation Vs Mechanisation

Manufactured Construction?

Manufacturing

Construction

To

To

Construction

Manufacturing

So What it Really Is?

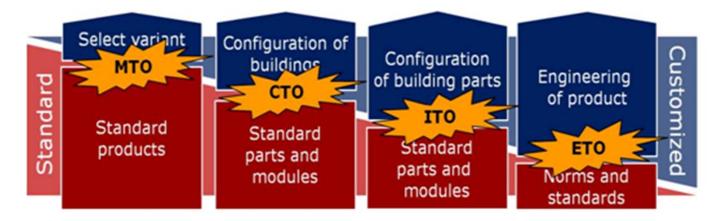
Delivering a
Construction
Product Through
Manufacturing
Process

Mass Production to Mass Customization

"...producing goods and services to meet individual customer's needs with near mass production efficiency"

Tseng and Jiao (2001)

Mass Production to Salford Customisation Value Chart


Mass production

Mass customization

Individual customization

University of Mass Customisation

Developing Reusable Systems
Vs
Developing Design Rules and
Go Up

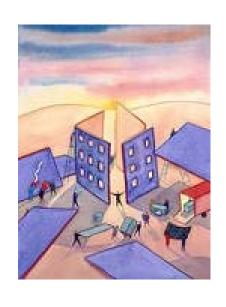
More to Choose From Vs More Choices to Make

Customer Perception

Low Cost

Fragile

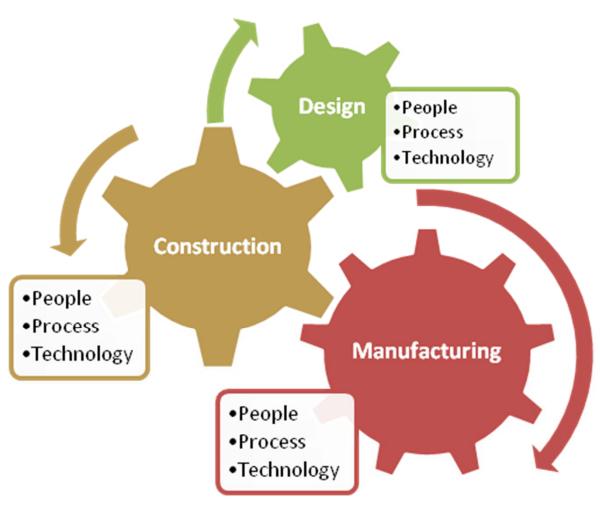
Traditional Building Materials


What is the Product Here?

Design for Manufacturing University of Salford and Assembly

Construction Is Merely Assembly

Optimisation of Design Is Where It All Starts



So How Do We Move Forward?

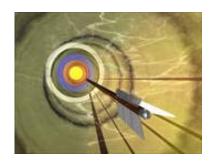
Roadmap for the Future

Construction People


Up-skilling personnel

Promoting sustainability

Improving Health & Safety



Manufacturing People

Improving integrated decision modelling

Maximising training impact

Alignment of new job roles

Design People

Importance of DfMA and logistics

Need for new skills

Need for new approach to design

University of Salford Construction Process

Greater flexibility needed

Integration of process with BIM

Improving the interface of OSP

Manufacturing Process

Learning from other industries

New business models needed

Identifying breakeven point for automation

Design Process

Adding value to the process

Improving the impact of design/technology

Better lifecycle process analysis

Construction Technology

Improving product modelling flow

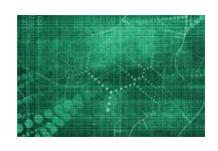
Identification of technology support tools

Better understanding of risk analysis

University of Manufacturing Technology

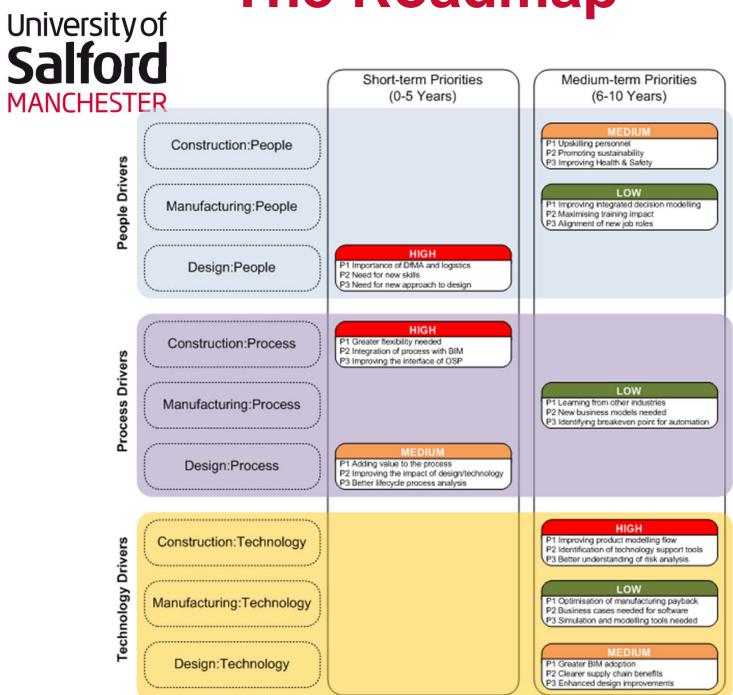
Optimisation of manufacturing payback

Business cases needed for Software


Simulation and modelling tools needed

University of Salford Design Technology

Greater BIM adoption


Clearer supply chain benefits

Enhanced design improvements

The Roadmap

University of **Salford** MANCHESTER

