SMRs will transform the Nuclear Industry

ICE - BuildOffsite 2016 Conference

Tony Roulstone

UK Energy Policy
 - mix of clean sources 80% cut CO_{2} by 2050

- UK Government energy policy is now:
- Double the scale of electricity in our energy mix by 2050: - supplied by:
- 30,000 large windmills ~80GWe (nominal) or 20-25 GWe (mean)
- Some gas to fill the gap, balance the system and set the price level;
- 16 GWe of large nuclear to replace old AGRs \& coal, using multiple reactor designs:

4 EPRs (1650MWe) by EDF 4 or 5 ABWRs (1350MWe) by Hitachi 3 AP1000 (1100MWe) by NuGen Westinghouse/Engie

- Second phase ~25 GWe lo-CO $\mathbf{C O}_{2}$ required.

EDF/AREVA - EPR

Hitachi/Horizon - ABWR
NuGen/Westinghouse - AP1000

SMRs in UK

- SMRs based on LWR technology considered now in UK because:
- Construction cost and scale of conventional reactors make them:
$>$ Too big to fund,
> Too slow to construct to meet power market needs;
$>$ Too expensive to make nuclear energy competitive.
- SMRs make use of the economies of volume not of scale;
- SMRs will require the whole nuclear supply chain to be redesigned, and many components and systems - to be designed for factory manufacture and site assembly;
- Support for SMR development - preparation for licensing, sites, funding of FOAK?

SMRs - change the industry

SMR

- Small
- Modular
- Reactor

SMART Korea

either add power incrementally, or made in modules
realistic proposals for deployment in 2030s are Light Water systems

15,000 reactor years of experience, innovation - how they are made.

Small Modular Reactor

less than 300MWe

Modules and Modular

NuScale Power plant with 12 Power Modules - 540MWe

NuScale 45 MWe Power Module

Modules and Modular

Pump/Valve Module

Major Modules Built On-site - AP1000 Sanmen

Heavy Lift - AP1000 Sanmen

- Sanmen CA20 Auxiliary Building 700 tne

- Sanmen CA01 SG shield \& refuelling canal - 950 tne

SMR scaling for Size/Output - Yes, cost is higher, but less than thought

- Why scaling does not work for Nuclear?

Cantor \& Hewlett 1988 [1]
1% increase in size $->$ scaling effect reduces expected cost by -0.65%
1% increase in size $->$ increase in build schedule \& additional costs $+0.78 \%$
net effect increase cost $+\mathbf{0 . 1 3 \%}$

Similar effects, noted in France \& Japan

Alternative approach:

- Scaling is sound for factory-based equipment,
- Site construction - schedule increase offset savings;
- More modest increase in costs for 200 MW (+24\%) \& 100 MW (+39\%) SMRs;
- Specific costa are consistent with finding of Abdullah 2013 [4]

Capital Cost
£/kWe

SMRs \& Schedule

- For potential clients for SMRs (utilities \& their funders), three most important features are:
- Much shorter construction schedule;
- Much greater certainty about the construction schedule;
- Lower interest payments during construction reducing LCOE;
- Schedule achievement is strongly influenced by the methods of planning, organisation and construction/assembly methods;
- World-wide LWR data is consistent with 36-40 mth construction schedule for SMR, with the combined effects of scale, modularisation \& learning effects;
- Important effect of modularisation on schedule;

CNNC
ACP100

Schedule \& Modularisation

- Best Practice - Modularisation has been used in Japan with ABWR since 1990 and in Korea with OPR1000 since about 1995;
- Modularisation is a strong feature of AP1000 - designed for 54 month schedule - but Westinghouse is still learning and no AP1000 have been yet been completed.

IAEA 2015 PRIS Database Report Table 14.

- Experience of effect of modularisation on schedule:
- Japan (ABWR) - progressive improvement in modularisation, scheduling and work practices has taken 12 months from ABWR schedules from 60 mths to 48 mths ;
- Korea (OPR1000)- adoption of Japanese methods including modularisation from 1995 for OPR1000 has reduced average schedule from 66 mths to 55 mths.

Programme Design

- The design of the SMR production \& roll-out will determine its economic success;
- Learning rate depends on regular rates of production - minimum required 10 per year;

Large reactor - low production <1 per year
SMR production rate 10 per year

- Standardisation is key:
> Design, Production, Assembly/Site construction, Commissioning;
which means: design envelope, safety regulation, technical standards etc.
- SMR cost learning rate increases with increased factory cost share - promoted by centralised manufacture, \& less local manufacture;

Factory share
Mean Learn

Rate

1- Factory modules follow large reactor practice 46% 8\%
2 - Modularisation of safety \& systems \& structure
65\% 10%

Scaling, Learning \& Modul'n

What will it take to make SMRs a competitive reality?

1. Volume to achieve production rate to drive down costs below other low carbon sources;

- Cost competitiveness depends on:
> Volume for production rate of 10 units pa - from UK plus partner country \& export;
> Radical modularisation to expand factory cost share.

UK Demand to 2050 (UK ETI 2015 [12])

- 16 GWe large reactors planned by 2035
- Further 25 GWe of nuclear to meet UK

Climate change objectives at lowest cost;

- Available sites constrain number of large reactors;
- Many more SMRs sites are available.

2. Common design licensed in more than one country:

- UK program must be concentrated on a single design;
- Tackle licensing issues;
- Common technical standards across several countries;

3. Contractors with different skills to deliver SMRs as a product, not a project;

- Coordination of supply chain
- Repeatability of delivery
- Continuous improvement of 'how to deliver'

References

1. Cantor \& Hewlett 1988. Economics of Nuclear. Power Resources \& Energy. 10 315-335 NH 1988
2. University of Chicago 2004. Economic Future of Nuclear Power. Chap 4. pg. 4-24 August 2004
3. Carelli 2010. Economic features of integral, modular, small to medium-sized reactors. Progress in Nuclear Energy 52 (2010) 403-414.
4. Abdullah 2013. Expert assessment of cost of LWR SMR. Carnegie Mellon, PNAS 2013.
5. Rothwell \& Ganda 2014. Electricity generating portfolios with Small Modular Reactors. ANL 2014 pg 20.
6. OECD 7195 2015. Nuclear New Build: Insights into Financing and Project Management. pg. 146.
7. IAEA Economic Modelling Working Group 2007
8. McDonald \& Schrattenholzer. Learning rates for energy technologies. En Policy 29 255-261 2001
9. Goldberg \& Rosner, SMR Key to Future of Nuclear Generation in US. U of Chicago. EPIC 2011
10. Chen \& Goldberg. Small Modular Nuclear Reactors: Parametric Modelling of Integrated RV Manufacture. Detailed Analysis Vol. 2 ANL 2013.
11. Wright, TP, Factors Affecting the Cost of Airplanes, Aeronautical Science 3: 122-128 1936.UK
12. UK ETI 2014.The role for nuclear in UK within low-carbon energy system.
13. Lovering 2016. Historical cost of global nuclear power reactors. Energy Policy 91 (2016) 371-382.
